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STEADY AND TRANSIENT HEAT TRANSFER BY 
RADIATION AND CONDUCTION IN A MEDIUM 

BOUNDED BY TWO COAXIAL CYLINDRICAL 
SURFACES 

YANPO CHANG and It. SCO’IT SMITH, JR 

(Received 24 February 1969) 

Abslrac-The heat transfer in a conducting, emitting and absorbing medium bounded by two infinite 
coaxial cylindrical surfaces is analyzed. Both transient and steady states are considered. According to the 
quasi-steady simplitication and Eddington’s fust approximation for radiative transfer, the problem is 
formulated in two differential equations: one for the radiation potential and the other for the temperature. 
They are then transformed into integral equations which are solved by the method of successive approxi- 
mations. Some insight into the effect of radiation on the heat flow is afforded by the calculation of radiation 
potential. For highly emissive surfaces, it is found that the interaction of radiation with conduction has 
a negligible effect on the total heat flux for both steady and transient states. Hence simple formulas are 

obtained for the calculation of heat fluxes. 
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NOMENCLATURE 

specific heat ; 
Green’s function of radiation poten- 
tial ; 

4mT:3t*/(pcp); 
Bessel function of second kind and 
order n; 
emissivity ; 

Green’s function of temperature ; 
defined by equation (13) ; 

3 eJCW - %)I ; 
modified Bessel function of first kind 
and order n; 
intensity of radiation ; 
Bessel function of first kind and 
order n; 

absorption coefficient ; 
eigenvalues of equation (14) ; 
RI*/(uT:~), radiation potential; 
defined by equation (6) ; 
density of medium ; 
Stefan-Boltzmann constant ; 

Ic(rz - ri), optical thickness of 
medium, 

modified Bessel function of second 
kind and order n ; 
thermal conductivity; 
kK/(4cTy3); 
inward drawn normal to surface; 
heat flux; 

?‘WY4); 
radial coordinate ; 

Subscripts 

b, 
c, 
r, 
s, 
19% 

black radiation ; 
pertaining to heat conduction ; 
pertaining to radiative heat transfer; 
surface ; 
surfaces at r1 and r2. 

lCP; 
temperature ; 
T*/TT ; 
time ; 

Superscripts 
* , dimensional quantity ; 
I 
9 pertaining to source in Green’s 

functions : 
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- 
2 average or Laplace transformed 

quantity. 

~ODU~ON 
IN RECENT years, many papers have been 
published on the heat transfer in steady state 
by combined radiation and conduction through 
a plane medium. There have been few investiga- 
tions for other systems, particularly in transient 
state. Howell [l] studied the steady problem 
for the energy transfer in media bounded by 
two parallel plane surfaces and also two coaxial 
cylindrical surfaces through the method of 
exchange factor approximation. Greif and 
Clapper [2] calculated the heat transfer in an 
annular medium by the superposition of pure 
conduction and pure radiation and found that 
the results are in good agreement with those 
reported in [l]. Viskanta and Merriam [3] 
investigated the steady problem for a hollow 
spherical medium through the solution of the 
rigorously formulated integral and in tegro- 
differential equations. Lick [4] considered the 
transient energy transfer in a semi-infinite 
medium bounded by a non-emitting and non- 
reflecting surface by linearizing the re-emission 
term. Nemchinov [5] also studied the linearized 
problem but was interested only in the propa- 
gation of thermal waves. Viskanta and La11 [6] 
studied the transient problem of heat transfer 
in a spherical medium at first from the exactly 
fo~ulat~ integral and inte~o-differential 
equations but diverted later to approximate 
calculations. Most recently, the steady and 
transient problems of heat transfer in a plane 
medium have been analyzed by Chang and 
Kang [7] according to a potential formulation. 

This paper concerns the steady and transient 
heat transfer in a conducting, absorbing and 
emitting medium bounded by two infinite 
coaxial cylindrical surfaces. The fundamental 
differential equations are formulated by em- 
ploying the first appro~mation of Eddington 
for radiative transfer. These differential equa- 
tions are then transformed, by the use of Green’s 
functions, into integral equations which are 

solved by the method of successive approxi- 
mations. 

One purpose of studying the steady problem 
is to indicate once more the usefulness of the 
differential formulation and the method of 
solution which has proved to yield accurate 
results for the temperature field and heat flux in 
plane layers. Another purpose is to suggest some 
approximate methods by which the heat flux 
can be calculated and how the non-linear 
problem may be linearized. 
The transient study deals with the response of 

the temperature and heat flow to a sudden 
change of the boundary conditions and indicates 
that this difficult problem can be treated with 
facility by the same method as for the steady state. 

The formulation of fundamental equations 
has been reported by several authors [S-lo]. 
However, the equations, particularly the bound- 
ary conditions, can be obtained in a somewhat 
different manner. Thus, for quick reference, 
they are derived in the Appendix. 

STATEMENT OF THE PROBLEM AND 
BASIC ASSUMPTIONS 

The problem to be considered is illustrated 
in Fig. 1. A conducting, emitting and absorbing 

FIG. 1. Geometry for medium between i&mite concentric 
cylinders. 

medium is bounded by two infinite coaxial 
cylindrical surfaces of radii r: and r:. The 
medium is initially at absolute zero temperature. 
The surfaces are suddenly brought to and kept 
at constant and uniform temperatures TT(r:) 
and Tf(r$). As time approaches infinity, the 
steady state is reached. 
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We assume that radiation is locally in thermo- If G&r 1 r’) is the Green’s function associated 

dynamic equilibrium and quasi-steady at any with 4, the formal solution for C$ satisfying (1) 

instant of time, scattering is negligible, and the and (3) can then be written as 
medium is grey with a unit refractive index. 
We also assume that the physical and thermal (5) 

properties of the medium are constant and the 
#(r, t) = 41(r) + 6x 7 G4(r Jr’) T4(r’, t) r’ dr’. 

r1 

surfaces are grey and emit and reflect radiation In (5) &(r) is the homogeneous solution of (1) 
diffusely. satisfying (3) and is obtained as 

Transient state 4Ar) = A0Z0tJW + BoKo(.JW (6) 
In the transient state the governing equations where IO and K, are modified Bessel functions 

of the radiation potential and the temperature of the first and second hinds and 

are given by equations (A.4) and (A.12) in the 
Appendix. By introducing the dimensionless 
quantities as defined in the Nomenclature and 

A, = _ $ [T;F,(J3,.,) + T;F,(J3r,)] 

specializing to the present problem they become go = _ 6 [T;F,(J3r,) + T;F4(J3r,)], 
(7) 

8’4 l&j 
0 

=+;%-34= -3T4 (1) with 

f+(~+f34-T4_ (2) FAJ3rJ = J3UJ3r2) - hK&/3r,) 

FAJ3rJ = J3Zl(J3rl) - hZo(J3r,) 

If emissivities of the two surfaces are assumed as 
constant and the same, the boundary conditions 

F,(J3r,) = J3K,(,/3r1) + hK,(,/3r,) 
(8) 

on &r’, t) are obtained from (A.7) as 

2 = ZI(C#J - T:) at r=rl 

F4(J3r,) = J3Z1(J3r,) + hZo(J3rz) 

CO = F,(J3r2)F2(JJ3rl) - F3(J3rl)F4(J3r2). 

84 
(3) 

-=-&j-T;) 
The Green’s function, G&r Ir’) in (5) cm be 

c% 
at r = r2. 

obtained from its properties by writing 

The boundary conditions on T(r, t), as prescribed 
earlier, are G& 1 r’) = & LA/W Ko($r) 

WI, 0 = T T(r,, t) = T,. 
(4) 

+ CAr’) Zo(,/3r) + Cdr’) KAJ3r) 

T(r, 0) = 0 for r > r’ 

Note that the radiation potential 4 changes 
with time only because of the presence of the G& 14 = & Zo(@9 Ko(,/W 

source term, 3T4(r, t). 
We now wish to solve (1) and (2) by the method 

+ CA+) Zo(,/3r) + CA+) Ko(,/3r) 

of successive approximations For this purpose, for r < r’, 

it is convenient to transform them into integral where the first term is the cylindrical surface 
equations by considering quantities on the right- source and sum of the second and third terms 
hand sides as known functions so that the is the solution satisfying the homogeneous part 
method of Green’s function can be used. of (1). Evaluating C,(r’) and C,(r’) from the 
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following conditions 

dG,=hC, 
dr 

at r=rl 

dG,= -hG, 
dr 

at r=r2 

we obtain, after a long procedure of deduction, 
for r > r’ 

G& 1 r’) = [AKo(J3r') + BZ,(J3r')] Z,(J3r) 

+ CCz0(JW + DKo(JWl Ko(JJ3r) (9) 

For r < r’, r and r’ are interchanged in (9). 
Coefficients in (9) are given as follows : 

A = FlL/3rJ F2(J3rA/E 

B = F@rJ FlL/3r2)P 

C = F&/J3rl) f’A/3r2W 

D = &($rJ f’,( $rJ/E 

where 

E = 2nCF,( J3rl)f'dJ3r2) 
- F2(J3rl)F1( J3r2)l 

and A, are the roots of 

J&r,) W-r,) - Y&r,) J0(k2) = 0. (14) 

The Green’s function, Gdr, t 1 r’, t’) in (11) can 
be found by Eigen-function expansion [ 121, or 
Laplace transformation. The Laplace transform 
of GT(r, t 1 r’, t’), i.e. CAr 1 r’, p), can be readily 
obtained from (9) by setting J3 = Jp and 
h -+ az. By inversion theorem we obtain, 

GT(r, t I r’, t’) 
x_ 

71 =- 
4 c A2 GW2) Ho(Q9 Ho(V) 

” J&r,) - JW,r2) 
II=1 

x ,-Nn;(t-t’, (15) 

which has been given in [ 111. 

(10) Equations (5) and (11) are two integral equa- 
tions which are most suitable for iterative solu- 
tion. Once the temperature and radiation 
potential are known, the total heat flux can be 
calculated by using (A. 13) 

4= -4+;C$ 
(16) 

The formal solution of (2) for T can be found = &r, t) + 4,(r, 0 
in the same way. If G&, t lr’, t’) is the Green’s 
function associated with T(r, t), the formal Steady state 
solution for T is then For steady state, the formal solution for 

4 is obtained from (5) by dropping the parameter 

T(r, t) = T,(r, t) + 27~ i dt’ y G,(r, t/r’, t’) 
t, while 41(r) and G,(rIr’) remain the same as 

[$(I’, t’) -‘T4(i’, t’)] r’ dr’ 

(11) (6) and (9). The formal solution for T(r) as well 
as its Green’s function can be obtained by 
letting t + co in (ll), (12) and (15), but the 

where T,(r, t) is the solution satisfying the homo- reduction of resulting infinite series to simple 
geneous part of (2) and the boundary conditions expressions of closed form is tedious. Further- 
(4), i.e. the solution of pure conduction and is more, it is more convenient to use equation 
well-known [ 111, 

T(r) t) = -n c cc [~~&~rI) - TIJ&,rJl Jo(kr2) Ho(k) _N~t + TI In(r,/r) - T2 ln(r/r,) 
J&rI) - J@,r2) ln (r2/r1) ’ 

(12) 

It=1 

where 

Ho(Q) = Y,(kI) Jo(k) - Jo(kI) X&z) 
(A.lO) rather than (A.12) in the Appendix for 
steady state. By non-dimensionalizing and 

(13) specializing (A.lO) to the present problem. we 
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obtain 

Integrating this twice and using the boundary 
conditions 

T = T,, 4 = &I) at r=rr 
(18) 

T = T,, 4 = 4@2) at Y = rZ, 

we obtain 

T = Tl - $$(T, - T,) 

Substituting 4(r), given in (5), into (19) yields an 
integral equation which can be again solved by 
the method of successive approximations. 

For very small values of N, the iteration on 
(19) will converge slowly. For this case, we can 
apply integration by parts to the integral in 
(5) so that the parameter l/N in front of the 
integral in (19) can be removed. Thus, an 
alternative form of (19) which is suitable for 
small values of N is obtained as 

T4 + 3NT = 3NT, - 3N(T, - T2) 

where 

+ 4(rA - W-h (20) 

I s , dT4 -- L(r, Y’) Y dr’ dr’ - -$ 

12 
P AT4 

x J M(Y, Y’) Y' c dr' (21) 
r 

In (21) the functions L.(r, z) and M(r, z) are given 

by 

L(r, r) = We(J3r) + CK&/3r)] I,(J3z) 

- Wcl(J3r) + %(J3r)] UJ3z) 

Wr, z) = [BI,(J3r) + ~&(,/3r)] z,(J3z) 
(22) 

- CCIJJ3r) + DK&/3r)] K,(J3z), 

where A, B, C and D are given by (10). 
The total heat flux is obtained from (A.13) as 

4 = qe + 41 = 
4N(T, - Tz) + 4(rl) - WZ) 

r ln(r&) (3r/4) ln(r,lrJ 

(23) 

Note from (23) that once the radiation potential 
is known, the heat flux can be readily calculated. 
Note also that if [#+,) - tir,)] were indepen- 
dent of N there would not be interaction between 
radiation and conduction. 

NuMERlCAL SOLUTION AND RESULTS 

Equations (5) and (11) for transient state and 
(5) and (19) for steady state were numerically 
solved by the method of successive approxi- 
mations on a CDC-6400 computer. The inte- 
gration and interpolation were made according 
to the spline-fit approximation [ 131 and the 
sub-routines of Katsanis [14] were applied. 
Other methods of approximation had been 
tried, but it was found that the spline-fit method 
is more accurate and efficient in the solution of 
integral equations, because the mesh size can 
be changed between calculation points whenever 
it is required However, its use in the calculation 
of derivatives is restrictive as was noted by 
Katsanis [14]. Therefore, the calculation of the 
heat flux where the temperature gradient changes 
suddenly may not be sufficiently accurate. 
However, only the wall fluxes are required and 
hence no difliculty was encounterdd. 

The Green’s functions were first calculated. 
For the transient state, the explicit part of the 
right-hand side of (11) was taken as the first 
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approximation of T(r, t), i.e., 

T”‘(r, t) = TJr, t) 

+ 27~ i dt’ 7 $,(r’) GT(r, t 1 r’, t’) r’ dr’ (24) 
0 ?I 

To save the core storage in the computer, 
the solution of (11) for T(r, t) was done by dividing 
t into several steps. First, T(r, t) was calculated 
up to a small value oft, say t,. Then T(r, t) was 
calculated for t, < t 6 t, by using T(r, tl) as 
the initial temperature and adding to the right- 
hand side of (11) the expression 

x2 OX XJiW,r2) 
T c AW,rJ - Ji%&r2) 

e- Na2t H,(l+r) 

n=l 

12 

X 

s 

r'T(r', tl) Ho(A,r’) dr’ (25) 

II 

The calculations for t, d t < t,+ 1 were done in 
the same manner. 

- Combmed conducthowrodlotIon N=003 
-- Pure canductlan.corresponds to N=OU3 
--- Combined conduction-rod!otw NzO-I 

O-7 

06 

05 

04 

03 

02 

Oi 

0 
IO I 2 1.6 20 

FIG. 3. Temperature in transient state for h = 0.5 

3.0 

i 

--- Pure conduction 

- N=O-I 

-- N=0.03 

q(r,t)~q,(r,t)+q,(r,fl 

-0 4 1 I I 0 I.0 20 30 40 5.0 60 

I 

FIG. 2 Distribution of radiation potential in transient state FIG. 4. Heat fluxes in transie:t state for T, = 1, T2 = 0.1, 
for T, = 1, T2 = 01, h = 0.5. h = 0.5. 
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FIG. 5. Distribution of radiation potential in steady state. 
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RG. 6. Temperature distribution in steady state. 

Generation of the Green’s functions and other 
data required about 50 s of computer time. 
Each i&ration required 8 s. Maximum error 
was assigned at O-1 per cent for convergence. 
Thirteen points along the radial coordinate were 
found to yield results with sufficient accuracy. 
Of these four were grouped in a finer mesh about 
the source point and could be moved as the 
source point changed. For small values oft two 
or three iterations yielded the desired accuracy. 

4 0 I.0 2.0 O-I 0 5 I 
,o_ ‘, v I.0 2-o 0.1 0.1 

I.0 2.0 I30 IO 
7 IO 2.0 100 0.5 

Q 

FIG. 7. Heat fluxes in steady state at inner surface. 

For the steady state, the iteration on (5) 
for C/J(~) and on (19) for T(r) are much simpler 
than those for the transient state. Each iteration 
required less than 0.1 s. 

Some of the calculated results of the radiation 
potentials for given values of the various para- 
meters are shown in Figs 2 and 5, of the tem- 
perature fields in Figs. 3 and 6 and of the heat 
fluxes in Figs. 4 and 7. Temperatures for pure 
conduction are also plotted in Figs. 3 and 6 
for comparison. 

Discussion and approximateformulaefor heatflux 
The potential fields of radiation, $(I, t) and 

$((I), as shown in Figs. 2 and 5, are of particular 
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interest. They not only give a greater insight e.g. E > 05, and T1 > T2. In other words, if we 
into the effect of radiation on the temperature are interested only in the rate of heat transfer. 
fields but also lead to some simple, approximate the Rosseland diffusion approximation may be 
formulae for the prediction of the heat flux. applied, as has been done by many aero- 

Consider first the transient state. Calculations dynamists, such as Pai [ 151 and Zel’dovich and 
were carried out for N = 0.1 and N = 0.03. Raizer [16]. As clearly shown in Figs. 2 and 4 
Figure 2 shows that the gradient of radiation the radiant heat flux attains its steady-state value 
potential at the hot surface (i.e. the inner surface) almost instantaneously. Thus, we may venture to 
is always larger in magnitude than that at the calculate the total heat flux at the inner wall by 
cold surface. This indicates that radiant energy 
is stored which elevates the temperature in the 4(r 1, l) g q(r 1, r)pure conduction 

medium. Thus, the smaller the value of N the + qr(r1, *)pure radiation- (26) 

qr(rl, 60) = (Tf _ T‘$) (28) 

faster the increase of temperature gradient at 
the outer surface which will, in turn, augment 
the heat transfer by conduction, as clearly 
shown in Fig. 3. Figure 2 also shows that 
iYcj#r decreases (in magnitude) with the increase 
of time at the inner surface but increases at the 
outer surface, i.e. the radiant energy trapped in 
the medium is smaller at later times. These two 
factors will, consequently, reduce the tempera- 
ture near the inner wall below that of pure 
conduction at larger times. Since the inner wall 
temperature is maintained at a constant value. 
the temperature profile then exhibits an S-shape. 
This is particularly evident for the steady state 
distribution, as clearly shown in Fig. 6 for the 
small values of N. 

Figure 4 shows that at the inner surface the 
total heat flux decreases with time faster at 
earlier times, but the radiant heat flux decreases 
slowly all the time. Note that the difference 
between the total heat flux and the heat flux for 
pure conduction is nearly independent of N 
and t for t > 0.5. This indicates that as far as the 
total heat flux is concerned, the interaction of 
radiation with thermal capacity and conduction 
is negligible for cases which have been calculated, 

Equation (28) was obtained from the diffusion 
approximation [17]. Calculated results from 
(26) are about 5 per cent higher than those 
obtained from (16). If, however, we use the 
formula recommended by Greif and Clapper [2] 
for the radiant heat flux, i.e. 

4(r1. m)p~re radiation 

xj’ - I\]-’ (29) 
\I;2 /J 

the calculated results are in very good agree- 
ment with those obtained by the iterative solu- 
tion, as shown in Fig 4, for E 3 0.5. However, 
(26) would fail for E < 0.5. 

For steady state, effects of optical depth, z, 
surface emissivity, E, temperature ratio T,/T, 
and the conduction-radiation parameter N on 
the radiation potential, the temperature distri- 
bution and the heat flux are shown in Figs. 557. 
For small optical depths, such as curves 1 and 
2, the drop of radiation potentials across the 
medium, i.e. &rI) - q5(r2), is essentially in- 
dependent of N. This holds nearly true also for 
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larger optical depths (r 2 1) with black surfaces. 
Since (23) indicates that the radiant heat flux 
depends only on this potential drop, the total 
heat flux for a large range of values of N can be 
calculated by using the potential drop for any 
value of N, say N,,, 

@) = ~N(TI - T,) + &ri,No) - ‘#‘@aNo) 
r ln(r21rJ 3r W2/rM 

(30) 

with other parameters being kept constant. 
Calculated results from (30), as shown in Fig. 7, 
agree well with those obtained from the iteration 
solution for E >, 0.5. As can be seen from Fig. 5, 
the accuracy of (30) decreases with the decrease 
of E. Calculated results from the formula of Greif 
and Clapper are also shown in Fig 7 and agree 
very well with those obtained by the present 
analysis for E > 0.5. 

Equations (19) and (23) indicate that the 
temperature field and the heat flux both depend 
only on the change of radiation potential. i.e. 
A+. Figures 5 and 6 show that, for given values of 
E, r and T,/T,, A$I varies little with N, whereas 
T4 changes rapidly. Therefore, it can be inferred 
that A4 is a weak function of T4. This gives us a 
great flexibility to approximate T4 in (5). In 
other words, we may linearize T4(r) by a known 
function, say T,(r), which does not differ too 
much from T(r) so that we can write 

T4 z 4T;T - 3T:. 

The function T,(r) may be taken as the tempera- 
ture distribution for pure heat conduction for 
large values of N. 

Mr/r2) 
T,(r) = T, + (Tl - T,) -. 

WI/r& 
(31) 

b L4) 
or N < O-1 we may multiply T, in (31) by a 

factor larger than 1, depending on the value of 
%,‘Y$“& t%&@!nWhbaL transfer in a plane 
@_&i&-r IT]. r#?@WW&ti81K equal to that 
3 t#@fWk&&d~‘ERtifi~ 
demonstrated in [lo@& @ 
temperature field and the heat fluxthus obtained 

If we are interested only in the rate of heat 
transfer at the inner wall with E > 0.5, the 
interaction between radiation and conduction 
can be neglected for both steady and transient 
states, provided that the inner wall temperature 
is higher than the outer. For steady state, this 
has been shown in [2] and also in [6] for a 
spherical shell. 

The great advantage of the present analysis is 
tqt, it can be readily applied to problems of 
F&&diation and conduction in non-grey f&Jhe annular me+m ar&&g&Lagreement 

with those obtained from the itetdtive solution. media and.&Xnulti-dimensional heat flow [ 181. 

Since &r, t) is also a weak function of T4(r, t), 
it is conceivable that this simple linearization 
procedure can -apply also for the transient state. 
However, this calculation has not been made. 

CONCLUSIONS 

The numerical solution of the integral equa- 
tions is simpler than that of the differential 
equations and much simpler than that of the 
rigorously formulated integrodifferential equa- 
tions. Only the Green’s function associated with 
the radiation potential needed to be constructed. 
All others can then be readily written down, 
both for one-dimensional and multidimensional 
problems. 

The accuracy of this method of analysis which 
has been shown for plane media [7] is, now, once 
more substantiated by the calculated results 
of heat flux which are in good agreement with 
those reported in [l] and (21. 

The use of radiation potential provides a 
number of advantages One of them is to show 
that the non-linearity of this problem is not as 
severe as it was once considered Although only a 
small amount of time was saved in the numerical 
solution of the linearized differential, or integral 
equations for the one-dimensional problem, 
the linearization procedure will simplify con- 
siderably the numerical calculation for more 
complicated problems. These include multi- 
dimensional energy transfer in conducting and 
radiating media, either at rest or in motion and 
will be reported in the future. 
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Before we conclude this study, some remarks 
on the grey approximation for gases with band 
absorption+mission seem in order. The grey 
model is a suitable start in the development of 
the mathematical method for solving non-grey 
problems and conclusions obtained from the 
grey case apply qualitatively to non-grey cases. 
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APPENDIX 

Under the assumptions stated earlier the 
transfer equation of radiation is well known as 

!Q.VZ* = -I* + n’Z,*, (A.11 
K 

where n is the refractive index and will be 
assumed equal to unity, the operator, del. is 
referred to physical coordinates, ;iz denotes the 
unit vector in the direction of propagation of 
radiation and other quantities are defined in the 
Nomenclature of this paper. We now integrate 
each term in (A.l) over the entire solid angle, 
471, and obtain 

k v Fj = -4d* + ~TCI,*. (A.21 

which is exact. If we multiply (A. 1) by D, integrate 
dver the entire solid angle, 41, and take ahe 
average value of the intensity for the left- 
hand side of (A. l), we obtain 

(A.3) 

Equation (A.3) is approximate and is known as 
Eddington’s first. approximation or me- 
Eddington’s appratiation. Eliminating ? 
from (A.2) and (A.3) yields 

- 3KZ” = -3lcz;r. (A.4) 
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To formulate the boundary conditions on I**, 
we follow Eddington by writing the average 
intensity in terms of two parts, one in the 
forward direction (denoted by a subscript + ) 
and the other in backward direction (denoted by 
a subscript -) along the normal to the surface, 
so that 

7* = (7*, + 7*_)/2. (A.5) 

An energy balance on the surface gives 

4:(s) = 717*+(s) - 717?(s) = EJCZ;, s - &,7J*_. (~.6) 

Applying (A.3) to the surface gives 

(A37 

Eliminating @(s), i?(s) and T*_(s) from the above 
four equations we obtain the boundary con- 

where 

h, = 3% 
2(2 - E,)’ 

64.8) 

The energy equation for combined radiation 
and conduction can then be written as 

pC,g-V.(kVT*)==;?IV. (A-9) 

For constant k and K equations (A.4) and (A.9) 
become 

PC, g - kV’T* = ; V2i* (A.lO) 

pi* - jK2f* = -K2~,*. (A.ll) 

Equation (A.lO) can also be written as 

pcP g - kV’T* = 4mc(i* - I;). (A.12) 

dition on I* as The heatVflLux is given by 
ai* 

(--> an s 
= h&i*(s) - r:J. 64.7) z* = kvT* -;vi*. 

TRANSPORT DE CHALEUR PERMANENT ET TRANSITOIRE PAR RAYONNEMENT 
PAR CONDUCTION DANS UN MILIEU LIMITE PAR DEUX SURFACES 

CYLINDRIQUES COAXIALES 

(A.13) 

ET 

R&m&On analyse le transport de chaleur dam un milieu conducteur Cmetteur et absorbant limit6 
par deux surfaces cylindriques coaxiales infinies. On considbre ii la fois le regime transitoire et le regime 
permanent. En accord avec la simplification quasi-permanente et la premiere approximation d’Eddington 
pour le transport par rayonnement, le probleme est mis sous la forme de deux equations differentes: une 
pour le potentiel de rayonnement et l’autre pour la temperature. Elles sont alors transform&es en equations 
integrales qui sont resolues par la mtthode des approximations successives. Une certaine connaissance de 
l’effet du rayonnement sur le flux de chaleur est apport&e par le calcul du potentiel de rayonnement. Pour 
des surfaces fortement &missives, on trouve que l’interaction du rayonnement avec la conduction a un 
effet ntgligeable sur le flux de chaleur total pour le regime transitoire et le regime permanent. On obtient 

par suite de cela des formules simples pour le calcul des flux de chaleur. 

STATIONARER UND INSTATIONARER WARMEUBERGANG DURCH STRAHLUNG 
UND LEITUNG IN EINEM, VON ZWEI HOACHSIALEN ZYLINDERN BEGRENZTEN 

MEDIUM 

Zusammenfassung-Der Warmeiibergang in einem leitenden, emittierenden turd absorbierenden, durch 
unendlich lange koaxiale Zylinder begrenxten Medium wird berechnet. Es wird sowohl der instationsire 
als such der Stationlre Zustand betrachtet. Entsprechend einer quasistationtien Vereinfachung und mit 
Hilfe der ersten Naherung von Eddington wird das Problem durch zwei Differentialgleichungen beschrie- 
ben : eine fti das Strahlungspotential und eine fti die Temperatur. Diese Gleichungen werden in Integral- 
gleichungen transformiert und iterativ gel&t. Die Berechmmg des Strahlungspotentials lhst den Einfluss 
der Strahlung auf den WIirmestrom erkennen. Im Falle stark emittierender Obertlgchen hat die Wechsel- 
wirkung zwischen Strahhmg und Leitung nur einen vemachhissigbaren Einfluss auf den Gesamtwar- 
mestrom, sowohl im station&en, wie such im instationiiren Zustand. Deshalb erhah man einfache 

Gleichungen filr die Berechnung der W&rmestriime. 
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CTA~MOHAPHblM I4 HEC’rAl~ilOHAPHbI~ TEII~IOOBMEH I43JIYWHmX 
II TE~JIOHPORO~HOCTbK) H CPEAE, 3AKJIIOYEHHO~ MEmaY ARYMH 

ICO_QUXA.rIbHhIMi4, IIIl,~I~HAPllYECrC~MI~ nOBEPYHOCTffMI1 

hH~oTaqns-Alran113clp~e~~~ I1eprI10~~ ~tw13 k3 T~IIJIOII~~~~~HU~~, IIo:IywOqt9i &1 IIl1I‘.IU- 

WaIOLQeft Cpene, Ol’p3HIiYeHHpi ABy?+lH IiO~KCll3~bHbIMM ~H.WH~pMYeCI~~I?rII IIOBepXHUCTR11II. 

PaCCMaTpHBaIOTCH KaIi IlepexogHbIe. T3IE II (‘TaqMOHapHbIe CO~TORHHH. I! (‘UIlTBt’TCTRI111 f 
KB33&KTaL,HOHapHbIM )‘npOII(eHI4eM II IIeJ’BOii annpO~CIlMaI~~le~ 3~fiPIHrTOH3 ,&iIH :I)WICTOIYI 

nepeH0G.l RaA3YLi t$OpMyJIElpyeTCR ~ByMH p3:LIWlHbIMLI yp3.HHeHMRMM : O;lHO-;I.mI IIUTPII~Il&7I3 

zi3nyYeHaR M ApyI’oe-_R.nri TeMnepaTypbr. :jTlf ypa”HP”“” :IaTeM llpeO6pa:ioHbIB3~TC~I ii 

&lHTerp%IbHbIe yp3BHeHHR. peIlIaeMbIe MeTO;lo%, IIO~JIe~OBaTt’JII,HbIX II~Ii6.KWWHItii. IiC’IiO- 

TOpaR OC06eHHOCTb BnCIRHHR 1~3~~WHHcl Ha. Tt~II.TIOBOii IIOTOH npOHI%IHeTCH lIpI pitt:YPTt’ 

noTeHqxana m.nyqeHm. HatneIlo, ‘IT0 ,Y[JIlI CII;IbHO Il:3Jr~~I~fOlI&Il.x nOBepXIIO(‘TeI? R331IMW 

,QeilCTBHe H3nyqeHIWI C Ten~OIIpOBOfiHOl’TbEO UIEaBbIBaeT IIpeHe6peiKHMo M3;IOe RJIilRHIie H;I 

BenMWlHy nOJIHOI’0 TenJIOBOI’O nOTOH IIp&I CTalllIOH3pHbIX II HCCT341IOH3.pHbIX I’OCTORHIIRX. 

IkXO~FI M3 3TOr0, nongqefm IlpOCTbIe I$OPM Y.iTbI AJIR pacseTa TenJIOBbIX IIoTOICOB. 


