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Abstract—The heat transfer in a conducting, emitting and absorbing medium bounded by two infinite
coaxial cylindrical surfaces is analyzed. Both transient and steady states are considered. According to the
quasi-steady simplification and Eddington’s first approximation for radiative transfer, the problem is
formulated in two differential equations: one for the radiation potential and the other for the temperature.
They are then transformed into integral equations which are solved by the method of successive approxi-
mations. Some insight into the effect of radiation on the heat flow is afforded by the calculation of radiation
potential. For highly emissive surfaces, it is found that the interaction of radiation with conduction has
a negligible effect on the total heat flux for both steady and transient states. Hence simpie formulas are
obtained for the calculation of heat fluxes.

NOMENCLATURE
specific heat ;
Green’s function of radiation poten-
tial;
Green’s function of temperature ;
defined by equation (13);
36/[22 - &)];
modified Bessel function of first kind
and order n;
intensity of radiation;
Bessel function of first kind and
order n;
modified Bessel function of second
kind and order n;
thermal conductivity;
kic/(4oTY?);
inward drawn normal to surface;
heat flux;
q*(aT*);
radial coordinate;
Kr¥*;
temperature ;
T*/Tt;
time;

t, 4o TH3t*/(pc,);

Y, Bessel function of second kind and
order n;

g, emissivity;

K, absorption coefficient ;

, eigenvalues of equation (14);

o, nl*/(T$*), radiation potential;

4 defined by equation (6);

0, density of medium;

o, Stefan—-Boltzmann constant ;

1, w(r, —r;), optical thickness of
medium.

Subscripts

b, black radiation ;

c, pertaining to heat conduction;

r, pertaining to radiative heat transfer;

s, surface;;

1,2, surfaces at r; and r,.

Superscripts

* dimensional quantity;

! pertaining to source in Green’s
functions;
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, average or Laplace transformed
quantity.

INTRODUCTION

IN RECENT years, many papers have been
published on the heat transfer in steady state
by combined radiation and conduction through
a plane medium. There have been few investiga-
tions for other systems, particularly in transient
state. Howell [1] studied the steady problem
for the energy transfer in media bounded by
two parallel plane surfaces and also two coaxial
cylindrical surfaces through the method of
exchange factor approximation. Greif and
Clapper [2] calculated the heat transfer in an
annular medium by the superposition of pure
conduction and pure radiation and found that
the results are in good agreement with those
reported in [1]. Viskanta and Merriam [3]
investigated the steady problem for a hollow
spherical medium through the solution of the
rigorously formulated integral and integro-
differential equations. Lick [4] considered the
transient energy transfer in a semi-infinite
medium bounded by a non-emitting and non-
reflecting surface by linearizing the re-emission
term. Nemchinov [5] also studied the linearized
problem but was interested only in the propa-
gation of thermal waves. Viskanta and Lall [6]
studied the transient problem of heat transfer
in a spherical medium at first from the exactly
formulated integral and integro-differential
equations but diverted later to approximate
calculations. Most recently, the steady and
transient problems of heat transfer in a plane
medium have been analyzed by Chang and
Kang [7] according to a potential formulation.

This paper concerns the steady and transient
heat transfer in a conducting, absorbing and
emitting medium bounded by two infinite
coaxial cylindrical surfaces. The fundamental
differential equations are formulated by em-
ploying the first approximation of Eddington
for radiative transfer. These differential equa-
tions are then transformed, by the use of Green’s
functions, into integral equations which are

solved by the method of successive approxi-
mations.

One purpose of studying the steady problem
is to indicate once more the usefulness of the
differential formulation and the method of
solution which has proved to yield accurate
results for the temperature field and heat flux in
plane layers. Another purpose is to suggest some
approximate methods by which the heat flux
can be calculated and how the non-linear
problem may be linearized.

The transient study deals with the response of
the temperature and heat flow to a sudden
change of the boundary conditions and indicates
that this difficult problem can be treated with
facility by the same method as for the steady state.

The formulation of fundamental equations
has been reported by several authors [8-10].
However, the equations, particularly the bound-
ary conditions, can be obtained in a somewhat
different manner. Thus, for quick reference,
they are derived in the Appendix.

STATEMENT OF THE PROBLEM AND
BASIC ASSUMPTIONS

The problem to be considered is illustrated
in Fig. 1. A conducting, emitting and absorbing
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K. 1. Geometry for medium between infinite concentric
cylinders.

medium is bounded by two infinite coaxial
cylindrical surfaces of radii r¥ and r%. The
medium is initially at absolute zero temperature.
The surfaces are suddenly brought to and kept
at constant and uniform temperatures T%(r})
and T%(r%). As time approaches infinity, the
steady state is reached.
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We assume that radiation is locally in thermo-
dynamic equilibrium and quasi-steady at any
instant of time, scattering is negligible, and the
medium is grey with a unit refractive index.
We also assume that the physical and thermal
properties of the medium are constant and the
surfaces are grey and emit and reflect radiation
diffusely.

Transient state

In the transient state the governing equations
of the radiation potential and the temperature
are given by equations (A.4) and (A.12) in the
Appendix. By introducing the dimensioniess
quantities as defined in the Nomenclature and
specializing to the present problem they become

2p 19¢
-t - = -3T% 1
or? + ror 3¢ )
aT 3T 10T .
£l (F :57)-""7'- @

If emissivities of the two surfaces are assumed as
constant and the same, the boundary conditions
on ¢(r, t) are obtained from (A.7) as

%=h(¢——T‘f) at r=r,;

or

5 (€)
-‘% =-hp—-T3 at r=r,

The boundary conditions on T'(r, t), as prescribed
earlier, are

T(r,0)=T,
T(r,0) =0

Note that the radiation potential ¢ changes
with time only because of the presence of the
source term, 3T(r, t).

We now wish to solve (1) and (2) by the method
of successive approximations. For this purpose,
it is convenient to transform them into integral
equations by considering quantities on the right-
hand sides as known functions so that the
method of Green’s function can be used.

T =T,
(7'2, t) 2 (4)

If G4(r|r') is the Green’s function associated
with ¢, the formal solution for ¢ satisfying (1)
and (3) can then be written as

r,t) = ¢,(r) + 6n j G r|r) THr, oy r dr. (5)

In (5) ¢,(r) is the homogeneous solution of (1)
satisfying (3) and is obtained as
O,(r) = Aol o(\/ 3r) + BoKo(\/ 3r) (6)

where I, and K, are modified Bessel functions
of the first and second kinds and

h
Ap= — G, [T1F,(/3ry) + T$F5(/3r1)]

@)
h
By = — <, [Tng(\/?’H) + T?F4(\/3’2)],
with
Fl(\/3"2) = \/3K1(\/372) - hKo(\/3’2)
Fz(\/3"1) = \/311(\/3’1) - hIo(\/3"1)
Fs(\/3"1) = \/3K1(\/371) + hKo(\/3r1) ()

F4(\/3r2) = \/311(\/3r2) + hlo(\/3r2)
Co = Fl(\/3r2) Fz(\/3"1) - Fs(\/37'1) F4(\/3"2)-

The Green’s function, G(r|r') in (5) can be
obtained from its properties by writing

1
Gyr|r) = P Io(\/3r") Ko(4/37)

+ Cy(r) Io(/3r) + Co(r') Ko(/3r)
for r>r

1
Gyr|r) = > Io({/3r) Ko((/31")

+ Cy(r') 1o(/3r) + Cy(r') Ko(/37)
for r<r,

where the first term is the cylindrical surface
source and sum of the second and third terms
is the solution satisfying the homogeneous part
of (1). Evaluating C,(r) and C,(r') from the
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following conditions

dG
d—r¢=hG¢ at r=r,
daG
-a—;i=—hG¢ at r=r,

we obtain, after a long procedure of deduction,
forr > r

Gy(r|r) = [AK(/3r") + Blo(/3r')] Io(,/3r)

+ [CI(/3r) + DKo(\/3r)] Ko(i/3r)  (9)
For r < ¥, r and r are interchanged in (9).
Coefficients in (9) are given as follows:

A = Fy({/3r)) Fo(/3r1)/E
B = F3(\/3r1) Fl(\/3"2)/E
C= Fs(\/37'1) F4(\/3r2)/E
D= F4(\/3"2) Fz(\/3r1)/E

(10)

where

E = 27T[F3(\/3r1) F4(\/3r2)
- Fz(\/37'1) Fl(\/3r2)]

The formal solution of (2) for T can be found
in the same way. If G.(r,t|r,t') is the Green’s
function associated with T(r,t), the formal
solution for T is then

t r2
T(r,t) = T(r,t) + 2z [dt' | Go{r, t|r, 1)
0 n (11)
[¢(r,t) — T, ¢)]r dr
where T(r, t) is the solution satisfying the homo-
geneous part of (2) and the boundary conditions
(4), i.e. the solution of pure conduction and is
well-known [11],

oo}

and 4, are the roots of
Jo(Ary) Yo(dry) — Yo(dry) JolAry) = 0. (14)

The Green’s function, G{r,t|r,t) in (11) can
be found by Eigen-function expansion [12}, or
Laplace transformation. The Laplace transform
of Gy{r,t|r'.t), i.e. Gr|r,p). can be readily
obtained from (9) by setting ./3 = ./p and
h — . By inversion theorem we obtain,

Gr, t|r, )

=g§}ﬂwmwwmmmﬂ
4 " J(:'Z)(inrl) - J%Um"z)

n=1

NIt —t'
X e Nt t),

(15)

which has been given in [11].

Equations (5) and (11) are two integral equa-
tions which are most suitable for iterative solu-
tion. Once the temperature and radiation
potential are known, the total heat flux can be
calculated by using (A.13)

oT 40d¢

1= NS 3%

= qL‘(r’ t) + qr(r’ t)‘

(16)

Steady state

For steady state, the formal solution for
¢ is obtained from (5) by dropping the parameter
t, while ¢,(r) and G(r|r') remain the same as
(6) and (9). The formal solution for T(r) as well
as its Green’s function can be obtained by
letting t —» oo in (11), (12) and (15), but the
reduction of resulting infinite series to simple
expressions of closed form is tedious. Further-
more, it is more convenient to use equation

(12)

T(0) = —n Z[TZJO(}'nrl) - TlJo(/ln"z)] J ol Anr2) Ho(A,1) e~ N T, In(ry/r) — T, ln(r/rl).

J%(Anrl) - Jg(lan)

n=1

where
Hy(4,2) = Yo(Ayr) Jo(A2) — J olAary) Yo(4,2)

(13)

In (ry/ry)

(A.10) rather than (A.12) in the Appendix for
steady state. By non-dimensionalizing and
specializing (A.10) to the present problem. we
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obtain
1d (dT\__1 d (d¢
rar\"ar ) " anrar ar

Integrating this twice and using the boundary
conditions

) 0. (7

T =T, ¢ = @) at r=r, 18)
T=T, ¢=¢r) at r=r,
we obtain
In(r/r,)
T=T gy =™
In(r/ry)
= INTnjry/ry) [o(r) — ¢/r2)]

+o[9) — 00 (19)
Substituting ¢(r), given in (5), into (19) yields an
integral equation which can be again solved by
the method of successive approximations.

For very small values of N, the iteration on
(19) will converge slowly. For this case, we can
apply integration by parts to the integral in
(5) so that the parameter 1/N in front of the
integral in (19) can be removed. Thus, an
alternative form of (19) which is suitable for
small values of N is obtained as

T* + 3NT = 3NT, — 3N(T, - Ty)

Infr/
iy ~ 000~ S0 7
+ ¢(ry) — P, (20)
where

() = 6y(r) + %[rthL(r,ro —r, TEM(r, )]

r

ﬁfur

dT4 6n

7

v

r2

4
JM(r r g—dr

r

1)

In (21) the functions L(r, z) and M(r, z) are given
by

Lir, 2) = [BIo(/3r) + CKo(y/30)] 1,(y/32)
— [AI(/3r) + DKo(/3r] K4(/32) -

M(r, z) = [Blo(/3r) + AKo(\/3r)] 1,(/32)
— [CIo(/3r) + DK (,/3r)] K1({/32),

where A, B, C and D are given by (10).
The total heat flux is obtained from (A.13) as

) LAN(T, — T,) | ¢(r) — ¢(ra)
g=¢q.+q,= riIn(ry/ry) (r/4) In(r,/r,)
(23)

Note from (23) that once the radiation potential
is known, the heat flux can be readily calculated.
Note also that if [¢(r,) — ¢(r,)] were indepen-
dent of N there would not be interaction between
radiation and conduction.

NUMERICAL SOLUTION AND RESULTS

Equations (5) and (11) for transient state and
(5) and (19) for steady state were numerically
solved by the method of successive approxi-
mations on a CDC-6400 computer. The inte-
gration and interpolation were made according
to the spline-fit approximation [13] and the
sub-routines of Katsanis [14] were applied.
Other methods of approximation had been
tried, but it was found that the spline-fit method
is more accurate and efficient in the solution of
integral equations, because the mesh size can
be changed between calculation points whenever
it is required. However, its use in the calculation
of derivatives is restrictive as was noted by
Katsanis [14]. Therefore, the calculation of the
heat flux where the temperature gradient changes
suddenly may not be sufficiently accurate.
However, only the wall fluxes are required and
hence no difficulty was encounteréd.

The Green’s functions were first calculated.
For the transient state, the explicit part of the
right-hand side of (11) was taken as the first
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approximation of T(r, t), r.e.,

TN, 1) = To(r, 1)
t rz
+ 2 {dt’ | () Golr, t|r, ) r dr (24)
0 r
To save the core storage in the computer,
the solution of (11)for T'(r, t) wasdone by dividing
t into several steps. First, T(r, 1) was calculated
up to a small value of ¢, say t,. Then T(r, ) was
calculated for t; <t <t, by using T(r,t;) as
the initial temperature and adding to the right-
hand side of (11) the expression

w2\ BT
2 J(z)(’lnrl) - J(z)(/lnrz)
n=1

x j rT(r, t,) Ho(A,r') dr (25)

ri

e~ N4 Ho(Ayr)

The calculations for ¢, < t < t,,, were done in
the same manner.
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Generation of the Green’s functions and other
data required about 50 s of computer time.
Each interation required 8 s. Maximum error
was assigned at 0-1 per cent for convergence.
Thirteen points along the radial coordinate were
found to yield results with sufficient accuracy.
Of these four were grouped in a finer mesh about
the source point and could be moved as the
source point changed. For small values of ¢ two
or three iterations yielded the desired accuracy.
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FaG. 7. Heat fluxes in steady state at inner surface.

For the steady state, the iteration on (5)
for ¢(r) and on (19) for T(r) are much simpler
than those for the transient state. Each iteration
required less than 0-1 s.

Some of the calculated results of the radiation
potentials for given values of the various para-
meters are shown in Figs. 2 and 5, of the tem-
perature fields in Figs. 3 and 6 and of the heat
fluxes in Figs. 4 and 7. Temperatures for pure
conduction are also plotted in Figs. 3 and 6
for comparison.

Discussion and approximate formulae for heat flux
The potential fields of radiation, ¢(r, ¢) and
@(r), as shown in Figs. 2 and 5, are of particular
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interest. They not only give a greater insight
into the effect of radiation on the temperature
fields but also lead to some simple, approximate
formulae for the prediction of the heat flux.
Consider first the transient state. Calculations
were carried out for N =01 and N = 0-03.
Figure 2 shows that the gradient of radiation
potential at the hot surface (i.e. the inner surface)
is always larger in magnitude than that at the
cold surface. This indicates that radiant energy
is stored which elevates the temperature in the
medium. Thus, the smaller the value of N the

where 5

eg ¢ > 05, and T, > T,. In other words, if we
are interested only in the rate of heat transfer.
the Rosseland diffusion approximation may be
applied, as has been done by many aero-
dynamists, such as Pai [ 15] and Zel’dovich and
Raizer [16]. As clearly shown in Figs. 2 and 4
the radiant heat flux attains its steady-state value
almost instantaneously. Thus, we may venture to
calculate the total heat flux at the inner wall by

q(rl’ t) = q(rla t)pure conduction

2 [Tz-lo(/;L ry) — TiJo(4 "2)]-]0(’1"2) —NA2 T, - T.
¥ 15 Dpure conduction = 4N . . ki id Nint o1 T2
q(ry )p duct [Z A J‘Z)(,ln,.l) _ Jgunrz) € + J

n=

3

-1
q,(rl,oo)=(T1‘—T%)[an’—2+r—‘<i—1>+i—1] |
ra\e, 2 g, 2

4

faster the increase of temperature gradient at
the outer surface which will, in turfi, augment
the heat transfer by conduction, as clearly
shown in Fig. 3. Figure 2 also shows that
0¢/0r decreases (in magnitude) with the increase
of time at the inner surface but increases at the
outer surface, i.e. the radiant energy trapped in
the medium is smaller at later times. These two
factors will, consequently, reduce the tempera-
ture near the inner wall below that of pure
conduction at larger times. Since the inner wall
temperature is maintained at a constant value.
the temperature profile then exhibits an S-shape.
This is particularly evident for the steady state
distribution, as clearly shown in Fig. 6 for the
small values of N.

Figure 4 shows that at the inner surface the
total heat flux decreases with time faster at
earlier times, but the radiant heat flux decreases
slowly all the time. Note that the difference
between the total heat flux and the heat flux for
pure conduction is nearly independent of N
and t for t > 0-5. This indicates that as far as the
total heat flux is concerned, the interaction of
radiation with thermal capacity and conduction
is negligible for cases which have been calculated,

+ qr(rla OO)pure radiation® (26)
, 27

ridn(ry/r;) @)

(28)

Equation (28) was obtained from the diffusion
approximation [17]. Calculated results from
(26) are about 5 per cent higher than those
obtained from (16). If, however, we use the
formula recommended by Greif and Clapper [ 2]
for the radiant heat flux, i.e.

q(rl* w)pure radiation
3 1
— (1% - T;)[;lnz+_.+ﬁ

Ty &y ra

x (71 - 1)] - (29)

the calculated results are in very good agree-
ment with those obtained by the iterative solu-
tion, as shown in Fig. 4, for ¢ > 0-5. However,
(26) would fail for ¢ < 0-5.

For steady state, effects of optical depth, 7,
surface emissivity, &, temperature ratio T,/T,
and the conduction-radiation parameter N on
the radiation potential, the temperature distri-
bution and the heat flux are shown in Figs. 5-7.
For small optical depths, such as curves 1 and
2, the drop of radiation potentials across the
medium, ie. ¢(r;) — @&(r,), is essentially in-
dependent of N. This holds nearly true also for
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larger optical depths (z > 1) with black surfaces.
Since (23) indicates that the radiant heat flux
depends only on this potential drop, the total
heat flux for a large range of values of N can be
calculated by using the potential drop for any
value of N, say N,
_4N(T, — T))

(ry, No) — ¢(ry, No)
an) = rin(ry/ry)

3rin(r,/r,)/4

(30)

with other parameters being kept constant.
Calculated results from (30), as shown in Fig. 7,
agree well with those obtained from the iteration
solution for ¢ = 0-5. As can be seen from Fig. 5,
the accuracy of (30) decreases with the decrease
of &. Calculated results from the formula of Greif
and Clapper are also shown in Fig 7 and agree
very well with those obtained by the present
analysis for ¢ = 0-5.

Equations (19) and (23) indicate that the
temperature field and the heat flux both depend
only on the change of radiation potential. ie.
A¢. Figures 5 and 6 show that, for given values of
&, T and T,/T,, A¢ varies little with N, whereas
T* changes rapidly. Therefore, it can be inferred
that A¢ is a weak function of T*. This gives us a
great flexibility to approximate T* in (5). In
other words, we may linearize T*(r) by a known
function, say T(r), which does not differ too
much from T(r) so that we can write

T* = 4T3T - 3T%.

The function T,(r) may be taken as the tempera-
ture distribution for pure heat conduction for
large values of N.

In(r/r,)

T =T, + (T, - T)——2> (31
. A) ( ) 2 ( i 2) ln(rl/rz) ( )
(Fbr N < 0-1 we may muitiply T, in (31) by a
factor larger than 1, depending on the value of
W, o the>B§seIMikeat transfer in a plane
geaimn [9]. 'WE Hiliy 2168 §aké T, equal to that
Of tREURBESEIhd HHESSH Wpptofifitation, as
demonstrated in [10324ad (38) &) of the
temperature field and the h:zt ﬂwf) thus obtained
forthe annular medjum ar¢ ingood-agreement
witlzhthose obtained from the iterative solution.

Since ¢(r, t) is also a weak function of T*(r, 1),
it is conceivable that this simple linearization
procedure can apply also for the transient state.
However, this calculation has not been made.

CONCLUSIONS

The numerical solution of the integral equa-
tions is simpler than that of the differential
equations and much simpler than that of the
rigorously formulated integro-differential equa-
tions. Only the Green’s function associated with
the radiation potential needed to be constructed.
All others can then be readily written down,
both for one-dimensional and multi-dimensional
problems.

The accuracy of this method of analysis which
has been shown for plane media [7] is, now, once
more substantiated by the calculated results
of heat flux which are in good agreement with
those reported in [1] and {2].

The use of radiation potential provides a
number of advantages. One of them is to show
that the non-linearity of this problem is not as
severe as it was once considered. Although only a
small amount of time was saved in the numerical
solution of the linearized differential, or integral
equations for the one-dimensional problem,
the linearization procedure will simplify con-
siderably the numerical calculation for more
complicated problems. These include multi-
dimensional energy transfer in conducting and
radiating media, either at rest or in motion and
will be reported in the future.

If we are interested only in the rate of heat
transfer at the inner wall with ¢ > 0-5, the
interaction between radiation and conduction
can be neglected for both steady and transient
states, provided that the inner wall temperature
is higher than the outer. For steady state, this
has been shown in [2] and also in {6] for a
spherical shell.

The great advantage of the present analysis is
that, i&hcan be readily applied to problems of
g Ra@dutadiation and conduction in non-grey
media and-¢Ptnulti-dimensional heat flow [18].
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Before we conclude this study, some remarks
on the grey approximation for gases with band
absorption—emission seem in order. The grey
model is a suitable start in the development of
the mathematical method for solving non-grey
problems and conclusions obtained from the
grey case apply qualitatively to non-grey cases.

ACKNOWLEDGEMENTS

This work was sponsored by the National Science
Foundation, Grant No. GK-1726. The authors wish to
thank Mr. C. S. Kang for his assistance in some parts of the
computer programming.

REFERENCES

1. J. R. HOwELL, Determination of combined conduction
and radiation of heat through absorbing media by the
exchange factor approximation, Chem. Engng Prog.
Symp. Ser. 61, 59 (1965).

2. R. Grerr and G. P. CLAPPER, Radiant heat transfer
between concentric cylinders, Appl. Scient. Res. 15A,
469 (1966).

3. R. VisgaNTA and R. L. MERRIaM, Heat transfer by
combined conduction and radiation between concentric
spheres separated by radiating medium, J. Heat Transfer
90 C, 2, 248 (1968).

4. W. Lick, Transient energy transfer by conduction and
radiation, Int. J. Heat Mass Transfer 8, 119 (1965).

5. 1. V. NEMCHINOV, Some non-stationary problems of
radiation heat transfer, Translation TT-4, Purdue
University, School of Aero. and Eng. Sci. (1964).

6. R. ViskaNTta and P. S. LALL, Transient cooling of a
spherical mass of high temperature gas by thermal
radiation, J. Appl. Mech. (Dec. 1965).

7. Y. P. CuanG and C. S. KANG, Steady and transient
heat transfer in a conducting and radiating medium,
to appear in AIAA JI.

8. S. C. TranGoOTT, A differential approximation for
radiative transfer with application to normal shock
structure, Proc. Heat Transfer Fluid Mech., Stanford
University Press (1963).

9. 1. M. CoHEN, Radiative heat flux potential, 4144 JI 3,
981 (1965).

10. Y. P. CHANG, A potential treatment of energy transfer
in a conducting, absorbing and emitting medium.
ASME paper 67-WA/HT-40.

11. H.S. CarsLaw and J. C. JAEGER, Conduction of Heat in
Solids, Chapter 14. Oxford University Press (1959).

12. P. M. MorsE and H. FesHBACH, Methods of Theoretical
Physics, Chapters 7 and 10. McGraw Hill (1953).

13. J. A. WacsH, J. H. AHLBERG and E. N. NILsON, Best
approximation properties of the spline fit, J. Math.
Mech. 11, 225 (1962).

14. T. KaTsanis, Use of arbitrary quasi-orthogonals for
calculating flow distribution in the meridionalpline of a
turbomachine, NASA-TN D-2546 (1964).

SCOTT SMITH, JR.

15. SHin-1 Pal, Radiation Gas Dynamics. Springer, Berlin
(1966).

16. YA.B. ZeL'DovIicH and YU. P. RAIZER, Physics of Shock
Waves and High Temperature Hydrodynamic Pheno-
mena, Edited by W. D. Haves and R. F. PROBSTEIN.
Academic Press (1966).

17. R. G. DEISSLER, Diffusion approximation for thermal
radiation in gases with jump boundary condition. Trans.
Am. Soc. Mech. Engrs 86, 2, 240 (1964).

18. V. J. LuNarDINI and Y. P. CHANG, On the nonlinearity
of radiative transfer in a conducting medium, submitted
to Int. J. Heat Mass Transfer for publication.

19. J. L. NovorNy and M. D. KEeLLEHER, Conduction in
non grey radiating gases, Int. J. Heat Mass Transfer
11, 65 (1968).

APPENDIX

Under the assumptions stated earlier the
transfer equation of radiation is well known as

1.
SQVI* = —I* + n2IE, (A1)
K

where n is the refractive index and will be
assumed equal to unity, the operator, del, is
referred to physical coordinates, Q denotes the
unit vector in the direction of propagation of
radiation and other quantities are defined in the
Nomenclature of this paper. We now integrate
each term in (A.1) over the entire solid angle,
47, and obtain
—i—_V-E, = —4nl* + 4nl¥,  (A2)
which is exact. If we multiply (A.1) by Q, integrate
over the entire solid angle, 44, and take #he
average value of the intensity for the left-
hand side of (A.1), we obtain
L p—
" \Z

R —
q4ry =

(A3)

Equation (A.3) is approximate and is known as
Eddington’s first. .approximation or Milne-
Eddington's approximation. Eliminating ¢*
from (A.2) and ¢A.3) yields

v (% VT*) — 3kI* = (A.4)

—3klf.
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To formulate the boundary conditions on T*,
we follow Eddington by writing the average
intensity in terms of two parts, one in the
forward direction (denoted by a subscript +)
and the other in backward direction (denoted by
a subscript —) along the normal to the surface,
so that

I* = (% + I*))2. (A.5)

An energy balance on the surface gives
q¥(s) = nl%(s) — nI*(s) = enlf , — enl*. (A6)
Applying (A.3) to the surface gives

4 (oI*
at(s) = - —f<—>.

Al
3k\ 0On (A3)

Eliminating g*(s), I* (s) and I* (s) from the above
four equations we obtain the boundary con-
dition on I* as

or*

(Wi =hallf) ~ 18] (A7)

where

o 3e
22—

The energy equation for combined radiation
and conduction can then be written as
*

oT 4 1 _-
pcpa_t*_ — V- (kVT*) = §nV . (; VI"). (A9)

hy (A.8)

For constant k and « equations (A.4) and (A.9)
become

pc or* — kV2T* = 4—nV27* (A.10)
P oe* 3k '
V2I* — 3x?T* = — 23 (A.11)
Equation (A.10) can also be written as
E 3
pey T kV2T* = 4ax(I* — IF). (A.12)

The heat flux is given by

. 4n .
J* = kVT* — 3—ZVI*. (A.13)

TRANSPORT DE CHALEUR PERMANENT ET TRANSITOIRE PAR RAYONNEMENT ET
PAR CONDUCTION DANS UN MILIEU LIMITE PAR DEUX SURFACES
CYLINDRIQUES COAXIALES

Résumé—On analyse le transport de chaleur dans un milieu conducteur émetteur et absorbant limité
par deux surfaces cylindriques coaxiales infinies. On considére a la fois le régime transitoire et le régime
permanent. En accord avec la simplification quasi-permanente et la premiére approximation d’Eddington
pour le transport par rayonnement, le probléme est mis sous la forme de deux équations différentes: une
pour le potentiel de rayonnement et I’autre pour la température. Elles sont alors transformées en équations
intégrales qui sont résolues par la méthode des approximations successives. Une certaine connaissance de
Peffet du rayonnement sur le flux de chaleur est apportée par le calcul du potentiel de rayonnement. Pour
des surfaces fortement émissives, on trouve que P'interaction du rayonnement avec la conduction a un
effet négligeable sur le flux de chaleur total pour le régime transitoire et le régime permanent. On obtient
par suite de cela des formules simples pour le calcul des flux de chaleur.

STATIONARER UND INSTATIONARER WARMEUBERGANG DURCH STRAHLUNG
UND LEITUNG IN EINEM, VON ZWEI HOACHSIALEN ZYLINDERN BEGRENZTEN
MEDIUM

Zusammenfassung—Der Wirmeiibergang in einem leitenden, emittierenden und absorbierenden, durch
unendlich lange koaxiale Zylinder begrenzten Medium wird berechnet. Es wird sowohl der instationare
als auch der Stationdre Zustand betrachtet. Entsprechend einer quasistationéren Vereinfachung und mit
Hilfe der ersten Naherung von Eddington wird das Problem durch zwei Differentialgleichungen beschrie-
ben: eine fiir das Strahlungspotential und eine fiir die Temperatur. Diese Gleichungen werden in Integral-
gleichungen transformiert und iterativ geldst. Die Berechnung des Strahlungspotentials lisst den Einfluss
der Strahlung auf den Wérmestrom erkennen. Im Falle stark emittierender Oberflichen hat die Wechsel-
wirkung zwischen Strahlung und Leitung nur einen vernachlissigbaren Einfluss auf den Gesamtwir-
mestrom, sowohl im stationdren, wie auch im instationiren Zustand. Deshalb erhilt man einfache
Gleichungen fiir die Berechnung der Wirmestréme.
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CTAHVMOHAPHBII 1 HECTAIIMOHAPHbBIA TEIIIOOBMEH U3JYYEHWEM
U TEIIODPOBOAHOCTBIO B CPEJE, 3AKNIIOUEHHON MEMIAY JIBYMs
KOAKCHAMBHBIMI ITNIUHIPUYECKUMI TTOREPXHOCTAMNI

AHHOTAIMA—AHATM3UPYETCA HEpeHoC TeIId B TEIUIONPOBOAHOM, u3ayuaomel 1 iorio-
uapmen cpege, orpaHuveHHPH ABYMA KOAKCUAXBHBIMY HMJIMHAPHYECKUMIL HOBEPXHOCTAMY .
PaccMaTpuBalOTCA KAK llepeXofHble, TAK W CTAIMOHAPHBEIC COCTOAHUHA, B COOTBETCTBAM (-
KBa3KMCTANMOHAPHLEIM YVIPOILEHHEM I NepBOH annpoKCHMAIRed BATMHITOHA ISt JIVHHCTOrO
nepeHoca 3afava QOPMYIUPYETCA IBYMA PA3IMYHBIMH YPABHEHMAMN © OJHO-JIH NOTeILUAIA
HBIIyYeHHA U Jpyroe—jJisi TeMOepaTyphl. ITH ypaBHeHHA 3aTeM NpeoOpas0BLIBANTCH B
UHTErpajibHbiC YPABHEHNSA, pellaeMble MeTO0M TOCIeJOBATeNLHHX Hpubaummenuii. Heko-
TOpad OCOOEHHOCTL BIMAHWA HBJIVYCHHA HA TOIUIOBON TIOTOR MNPOABIAETCA 1PH pPacdeTe
noTeHNMana usirydenus. HaligeHo, 4To s CHIBHO H3JIYYAOUMX HOBEPXIOCTeH BIAUMO-
AeffCTBMe M3IYYeHHMA C TeIIONMPOBOJHOCTHIO VKABBIBACT NpeHeOperKUMO MATI0e BIAMAHME HY
BEJMUAHY [OJHOTO TeNJOBOTO IOTOKA DU CTAINIOHAPHLIX M HECTAINOHAPHBIX OCTOAHHAX.
Hcxopga u3 oToT0, MOJAYYeHH NpocTeie POPMYIH IJIA pacyeTa TenIOBHIX MOTOKOR.



